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A theory of Taylor-Couette flow in colloidal crystals formed from suspensions of highly charged,
poorly screened particles is presented. We show that the usual Taylor instability is suppressed and two
new types of instability emerge at low shear rates. These can lead to pattern formation and can form
vertical striped phases. The results are discussed in light of the experiments of Weitz, Dozier, and Chai-
kin [J. Phys. (Paris) Colloq. 46, C3-257 (1985)] and possible light-scattering experiments are analyzed.
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I. INTRODUCTION

Charged colloidal particles can form crystalline sus-
pensions at very low packing fractions. Poorly screened,
electrostatic repulsion between the colloidal particles is
the driving force for the crystallization, and the resulting
crystals are extremely soft [1]. It is well known that
suspended particles can drastically alter the dynamical
properties of a fluid, although the effects are usually pro-
portional to the packing fraction of the suspension. The
same is true for extremely dilute charged colloidal sus-
pensions, and there have been several experimental and
theoretical studies of these systems in simple hydro-
dynamic flows. Of these, the most relevant for this work
are the studies of shear-induced melting phenomena
which has been examined experimentally [2,3] and for
which several different theories have been proposed [4,5].

Some novel phenomena were observed by Weitz, Do-
zier, and Chaikin [2] who found that the usual Taylor in-
stability is suppressed when colloidal crystal is placed be-
tween corotating cylinders, and instead, the suspension
forms a pattern of colored vertical stripes that rotates in
time. It is these phenomena that are the subject of this
work, and we theoretically investigate Taylor-Couette
flows in colloidal suspensions.

When the inner cylinder is rotated, one would expect
the Taylor instability to occur when the critical Taylor
number is reached [6]. However, in a crystalline colloidal
suspension, the resulting Taylor roll would require that
the colloidal crystal be strongly deformed. This costs
elastic energy, and hence one should naively expect that
the critical Taylor number will increase. While this argu-
ment is correct for the formation of Taylor rolls, it ig-
nores other instability mechanisms that are specific to
sheared crystals.

The behavior of molecular solids under shear is usually
analyzed in terms of dislocations, and indeed this was
how the experiment of Ref. [2] was analyzed. In molecu-
lar solids, instability mechanisms associated with anhar-
monic aspects of the potential [7] usually require too
much energy and hence do not occur in practice. This is
not necessarily the case for sheared colloidal crystals
since the elastic moduli are so small. Another difference
lies in how the shear is transmitted to the crystal; in the
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colloidal system it is primarily through the motion of the
underlying liquid, while it is applied at the surface of the
crystal in molecular systems.

For plane Couette flows in three spatial dimensions, it
has been shown [4] that the two-dimensional (2D) shear-
ing motion of the colloidal particles in the crystal, which
arises when the underlying fluid is laminarly sheared, re-
sults in a periodic modulation of the elastic properties of
the crystal; this in turn leads to a Mathieu-Hill instability
involving long-wavelength transverse acoustic modes of
the system. While the precise details of motion of the
colloidal particles in the 2D sheared phases may be non-
trivial (e.g., zigzag motions [3]), all that really matters for
the Mathieu-Hill mechanism is that the instantaneous
primitive lattice vectors be periodic functions of time.
The critical shear rate is strongly dependent on the sys-
tem size; it is vanishingly small for sufficiently wide sys-
tems and lies in the range observed in the experiments
when the appropriate physical parameters are used
(about 20 Hz in Ref. [3]). Finally, while planar geometry
is more difficult to realize experimentally, the pure fluid
hydrodynamics has the advantage of being stable.

In this paper, we present a theory for the long-
wavelength properties of a sheared colloidal crystal in the
Taylor geometry. We will show that the critical Taylor
number is increased; nonetheless, we find two instabilities
which operate at low shear rates when either the inner or
outer cylinder is rotated. Moreover, one of mechanisms
involves modes which have many of the geometric
features found in the experiments.

In Sec. IT we derive continuum equations of motion for
a dilute sheared crystalline suspension and underlying
fluid in the Taylor geometry, i.e., when the suspension is
confined to a region between coaxial cylinders, either of
which may be rotated. These equations should be valid
for long wavelength motions of the system. They gen-
eralize those presented in Ref. [4] and are based on the
same physical assumptions. In particular, the colloidal
particles are taken to be pointlike and their interaction
with the underlying fluid is via a Stokes drag coefficient.

A linear stability analysis of the laminar flow solutions
to these equations of motion is performed in Sec. III.
While we find axially symmetric Taylor roll instabilities,
these are not the first modes to go unstable for reasonable
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values of the transverse sound speed of the colloidal crys-
tal. Instead, the system first becomes unstable through
one of two mechanisms: the Mathieu-Hill mechanism dis-
cussed in Ref. [4] and a mechanism associated with su-
personic flow in elastic systems. In either case, the mar-
ginal state is uniform along the axis of the cylinders and
consists of a large number of uniformly spaced, rotating
stripes. This is what is observed in the experiments of
Weitz, Dozier, and Chaikin [2].

Nonlinear corrections are considered in Sec. IV; the re-
sulting nonlinear equations are solved numerically, and
some comparisons with the results of Weitz, Dozier, and
Chaikin [2] are made. Section V contains an analysis of
the elastic light-scattering experiment. We show that the
Bragg scattering pattern will be distorted by three effects:
the rotation of the fluid, the shearing of the lattice due to
the presence of a shear gradient in the fluid, and, finally,
the distortion of the lattice associated with the instabili-
ties. Finally, Sec. VI contains a summary and discussion.

II. BASIC THEORY
AND PRELIMINARY ANALYSIS

As was discussed in Ref. [4], the equations of motion
for a colloidal suspension and the underlying fluid can be
written as

m¥,=—6mn R [t,~Vv(r,t)]+ ¥ Flr,—rg), (2.1
B (#a)
and
Y v WY | ==V 0) 47,V (5,0)
Pr |, v-Vv pu(r, n,Vov(r,

+6mn R, 38(r—r1,)[i,—v(r1t)],

(2.2)

where p, and 7, are the mass density and the dynamic
viscosity of the fluid respectively, p, is the hydrostatic
pressure, R, is the radius, m, is the mass of colloid,
F(r,—rp) is the force the Bth colloidal particle at posi-
tion rg exerts on the ath at r,, and v (r,t) is the fluid ve-
locity field.

In this work, we shall focus on the system’s behavior
when it is sheared at low shear rate. By low shear rate,
we mean that §=67n R 7, /m., where 7, is a charac-
teristic time of the hydrodynamic shear, is sufficiently
large. In this event, the colloid particles will approxi-
mately follow the surrounding fluid, i.e.,

t,=v(r,t)+0(EY. (2.3)

For typical colloid suspension in water R, is O (0.1 pm).
Hence, if 7, ~ 1072 sec, corresponding to a shear rate of
about 100 sec” !, one finds £~10° Therefore, treating
& ! as a small parameter is a good approximation [4].
No-slip boundary conditions are imposed on the fluid
at the walls of the system, i.e., the tangential components
of the fluid velocity equal the corresponding components
of the surface velocity, while the normal component van-
ishes. With these boundary conditions, it is well known
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[6] that steady Taylor-Couette flow in cylindrical,
(r,4,2), coordinates has v (,0’ =y (20) =0, while
(Q,R3—QR})  (Q,—Q,)RIR}
R}—R? (R3—R)r* |
(2.4)

where ); and R; are angular velocities and radii of inner
(i=1) and outer (i =2) cylinders. In addition, this state is
stable as long as the Taylor number is less than the criti-
cal one [6].

In the absence of shear, the colloid particles will crys-
tallize if the intercolloid screened electrostatic repulsion
energy at the average distance between particles is large
with respect to thermal energies. Of course, placing such
a crystal into a cylindrical geometry will distort (i.e.,
bend) the crystal or introduce dislocations. Nonetheless,
these effects will be unimportant locally if the radii of the
inner and outer cylinders of the Taylor cell are large com-
pared to the crystal lattice spacings, and will not be con-
sidered further.

As was shown in Ref. [4], a laminar steady state can
arise in plane Couette flow, even in the presence of col-
loid. In this state, adjacent layers of colloidal particles
slide over one another as they follow the fluid stream-
lines. In curved geometries, the argument used in Ref.
[4] is not exact; specifically, the sheared crystal does not
necessarily have inversion symmetry, and hence one can-
not argue that the intercolloid force terms cancel exactly
for laminar states of flow. This will result in a
modification of the velocity profile. Nonetheless, there
are two reasons why we may neglect this effect: (1) the ex-
tra force terms are proportional to the average colloid
density which is very small; and (2) the magnitude of the
net intercolloid force resulting from breaking local inver-
sion symmetry will be small as long as the range of the in-
tercolloid forces is small compared with the Taylor cell
radii. Thus the system should approximately behave as if
it were locally planar when the preceding conditions
hold. More importantly, the usual Taylor-Couette veloci-
ty profile, cf. Eq. (2.4), will still be valid, and our goal is
to examine the stability of these laminar states.

In a sheared colloidal crystal, the individual colloidal
particles do not remain near fixed lattice positions; rather
they follow the rotation of the underlying fluid, and
hence the particle displacements need not be small.
Nonetheless, a displacement field can be introduced as
follows. Let R,(#) be the position of the ath particle in
the crystal at time ¢ in the laminar flow and introduce a
displacement field 9(r,¢) by requiring that

r()=R, (1) +n(r (1),t).

VE#O)EI‘Q(I‘)=V

Strictly speaking, 7(r,?) is only defined at discrete points
in space; this is not a serious limitation as long as we re-
strict our discussion to cases where 7(r,?) is character-
ized by length scales that are large with respect to the lat-
tice constants characterizing the sheared colloidal crys-
tal. Indeed, if this restriction is not valid, as was shown
by Felderhof and Jones [8], the equations of motion must
be modified to account for the strong relaxation mecha-
nisms associated with counterion plasmons.
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In performing a linear stability analysis of the laminar
state, we assume that the displacement field #(r,#) and
the deviation of velocity field from the laminar flow

dv(r,t) are small. Hence
r () ~R (1) + (R, (2),t)+0O(5?) (2.5)

and

v(r,t)=vO(r)+8v(r,t2). (2.6)

The colloid may be treated as a continuum as long as the
deviations are characterized by long length scales. In this
case, linearizing the equations of motion shows that

m D}n(r,t)=—6mrn R [D,7(r,t)—8v(r,t)
—n(r,t)-Vv(r,t)]+f(r,2),

2.7
and
ps[D,8v(r,t)+8v(r,1)-Vv(r,t)]
= —VSph(r,t)+77fV28v(r,t)
+6mn R . > 6(r—R)[D, (R, 1)—56v(R,1?)
—n(R,,1)-Vv (R, t)].
(2.8)
Here,
D, = 9 +v(r)-V
ot
and the superscript (0) for the steady-state velocity field
has been dropped.

The force term f(r,z) arises from the interactions be-
tween the colloidal particles and is discussed in Appendix
A. It depends on the details of sheared colloid lattice,
and we use a variant of the Kramers-Moyal expansion [9]
to express the force as a gradient of a stress tensor, i.e.,

f(r,t)=—V-0(r,t).

In general, the stress tensor is a functional of the strain
tensor d7'(r,z)/dx’. However, only the first derivatives
of n(r,t) need be considered as long as the range of the
intercolloid interactions is small with respect to the
length scales characterizing 7(r,t). To leading order in
the ratio of these length scales we find that

F(r,0)=1 3 R, J0)F(R, 4(t)+R, 4(1)-V(r,1)),
a,B

(B+a)
(2.9)

where R, 5(1)=R,(t) —Rg(2). The stress tensor has thus
become a nonlinear function of V7(r,z). Note that its
time dependence arises both from the time dependence of
7(r,¢) and from the leading-order motion of the lattice in
the laminar flow.

Expanding Egs. (2.7) and (2.8) in powers £ ! and ex-
pressing the result in cylindrical coordinates gives
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D}y, —2Q(D, 14— rQ'n,)

_ 2 L _ 2 9Dimy—rQ'n,)
v| |V i) D7, 2 3%
(r,t) 98
— pcfr _ I , (210)
pm, or
D/ny+2QD,n,
1 2 d(Dm,)
—v | |V2—== |(D,n,—rQ'n )+ —1""
v r2 ( tn¢ r T’,.) r2 a¢
(r,t) 38,
_pSont) 1 Ph 1)
pm, r 0¢
and
(r,t) 3§
Dlm,—vV’Dm,= Pet: - 2.12)

pm, oz

where p (r,t) is the mass density of colloidal which is
treated as a constant over scales much larger than the lat-
tice spacing, p=p,+p,, and v is the kinematic viscosity.
The incompressibility condition for the underlying
fluid, i.e., V-v(r,t)=0, requires that D,V-9=0, thereby
implying that V-7 is a constant along a streamline. How-
ever, 7 must either be quasiperiodic in time or decay to
zero in the long time limit for nonchaotic motion. In ei-
ther case, V-5 cannot be any constant other than zero,
and therefore the incompressibility condition becomes

V-n=0. (2.13)

For the purposes of a linear stability analysis, the stress
may be further expanded to linear order in V7. As dis-
cussed in Ref. [4] and Appendix A, this suggests the fol-
lowing model expression:

pmcc2
f(r,1)= [1+2ecos(I't)]V2y(r,t), (2.14)
c
where
R Q,—R,Q,
MNe=—- = )
R,_R, (2.15)

is average velocity gradient in r direction and €<0.5.
The term in € models the modulation of the local elastic
constants that results from the periodic distortion of the
crystal lattice caused by the laminar flow. We have ig-
nored the contributions of higher-order harmonics and
have replaced the local modulation rate (i.e., the local ve-
locity gradient) by the average gradient I'. This last as-
sumption should be valid as long as the distance between
the inner and outer cylinders is small compared with the
radii. Finally, as was done in Ref. [4], we have assumed
that the system is locally isotropic, at least for the pur-
poses of calculating the elastic moduli. Should this not
be the case, the acoustic mode structure will be slightly
more complicated; nonetheless the basic physical ideas
presented here will still be valid.

By defining 7, 4, =Vre '(m¢+k22)17{,,¢,z;(r,t) and
eliminating 8p,, in Egs. (2.10)-(2.12), we find that



48 INSTABILITY AND PATTERN FORMATION IN COLLOIDAL-. ..

O:thﬁr—2Q(Dt*T7¢—rQ’ﬁr)

_ 2 _ 10 2im_
c(t) ([A r2 n, 77745
1 _ 2im _ Yy
—v A—:]D,n,——rz (D,17¢—rﬂ 7,)
1 _ _ im _
“pDr (D}—vAD,—c(t)*A] | D, P |
z
(2.16)
0=D/7,+2QD,7,
1 2im
—c()| |A——=5 [+ 57
2 M 2 nr
2i _
—v| |a—L D5~ rom)+ 2 D7,
r r
im _ im _
—E[D,?‘—VAD,—CU)ZA] D P+ | 2D
z
and
D,+—,+L’r27—7¢+ik,1-,z=o, (2.18)

where

c(t)=c[1+2ecos(T't)]'?,

D,E%+imﬂ(r),

o
3?2 m*—1/4 2
A= ar? r? R
and
+ 0 1
T > 4 -
D, = or ~ 2r

Furthermore, if k, =0, we find that 7, completely decou-
ples from other components of 7, i.e.,

[D}—vAD,—Ac(t)*1%,=0. (2.19)

ITI. LINEAR STABILITY ANALYSIS

We now analyze the stability of the laminar state under
shear. The analysis is standard and is laid out in detail in
Ref. [4]. In short, we expand the space dependence of
M.(r,2) and %4(r,t) in an complete orthonormal set of
functions {¢,(r)}, which are defined for r€[R,,R,].
The no-slip boundary conditions imply that both ,(r)
and %, '(r) vanish at R=R,R, [10]. It is then easy to
rewrite Egs. (2.16) and (2.17) in first-order matrix form
y=Mpy, where M is the matrix representation of the
operator

0 —1

M=|_2-ew —a 8]

(3.1)
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The operators ) , ﬁ, and C(z) corresponding to Egs.
(2.16) and (2.17) are listed in Appendix B.
In the actual computations, we take [6]

_y | cos(S,x)  cosh(S,x)
" | cos(S,L)  cosh(S,L) |
(even parity)
Y, parity( 1) = [ sin(K,x)  sinh(K}x) 3.2)
°dd | sin(K,L) sinh(K.L)
(odd parity),
where L=(R,—R,)/2, r=x+(R;+R,)/2, and

Neven (0dd) are normalization constants defined by requir-
ing that

R, R
% dr |¢rn,a(r)| =1.
S,,Sn, K,,and K, satisfy

S,tan(S, L)+ S, tanh(S/L)=0 (3.3)

and

K, tanh(K;L)—K,tan(K,L)=0, (3.4)

where S,>—S?=K,?—K2?=k? where we usually set k to
Zero.

A similar procedure can be applied to Eq. (2.19) when
k,=0. The resulting analysis is much simpler; 4 be-
comes the identity

B=—vA+2imQ(r), (3.5)

and
C(1)=—m2Q¥r)—imvAQ(r)—c*[1+2ecos(T't)]A.
(3.6)

In this case it is simpler to use sinusoidal functions as the
basis. Equations (2.16) and (2.17) are more general for
k,#0, and better convergence is expected when the basis
defined by Eq. (3.2) is used since these functions satisfy all
the boundary conditions for the problem. On the other
hand, k,=0 will turn out to be the physically relevant
case; hence Eq. (2.19) will apply and the simpler
sinusoidal basis may be used.

No matter which basis is chosen, the resulting system
of ordinary differential equations is a set of coupled
Mathieu-Hill equations [4,11,12] and may be studied us-
ing Floquet’s theorem; i.e., we write the solutions to the
expanded equations in the form y(t)=e“'yp(t), where
Y, (1) is periodic with period 27 /T, and p is the Floquet
exponent. The system is locally stable as long as
Re(u) <0. Hence, for a given set of parameters, we look
for the lowest angular velocity for which Re(u) vanishes.

The periodic function y,(¢) is expanded as a discrete
Fourier series in time and the Floquet exponents are com-
puted by finding the zeros of the Hill’s determinant or,
equivalently, by examining the eigenvalues of the matrix
which results after Fourier analyzing M in time. The
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point at which the expansions are truncated is varied un-
til there is no significant change in the results; for the ma-
terial parameters considered below, convergence is ob-
tained when 10 spatial and 11 temporal (when €0) basis
functions are used.

When the elastic forces are switched off, i.e., when
¢=0, it is easy to show that Egs. (2.16) and (2.17) are
equivalent to the usual Navier-Stokes equations for
Taylor-Couette flow [6], and hence Taylor-roll instabili-
ties result. On the other hand, if ¢50, i.e., when intercol-
loid interactions are included, forming a Taylor roll re-
quires that the colloid lattice be deformed into a roll.
This requires energy, and it is not surprising that the sys-
tem becomes more stable to these kinds of deformations.

This suppression of the Taylor instability is examined
in Fig. 1(a). When ¢ =0, the Taylor instability occurs at
the expected inner cylinder rotation rate and the roll has
the expected periodicity in the z direction. The Taylor
instability is shifted to higher rotation rates as the crystal
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is made more rigid. For typical colloidal crystals, the
speed of sound is roughly 10 cm/sec and convection re-
lated (such as Taylor) instabilities are strongly suppressed
at low shear rates; cf. Fig. 1(b).

We can find stability boundaries which correspond to
instabilities that are qualitatively similar to those found
in the usual Taylor instability. Floquet exponents for
these modes are shown in Fig. 1(c). While the mode [in
the specified (k,,m) plane] to first go unstable is slightly
different than the usual Taylor instability, cf. the inset,
the continuation of the mode corresponding to the usual
Taylor instability will end up growing faster at high rota-
tion rates, and should result a more usual Taylor-roll pat-
tern being formed. This is observed in the experiments of
Weitz, Dozier, and Chaikin. The change to a more usual
pattern encountered in Taylor flow should be expected
because the convective terms which drive the Taylor in-
stability at some point will dominate the elastic ones
(remember that colloidal crystals are extremely soft).

15 T T T =0 T T T T
(a) (b)
131 4 18 ]
§
:\11, ‘o unstable | 186 |
lE E n
S 2 5 stable region unstable region
2o 8§ = |
N _g 4 K 141
unstable for c=0
s stable for c=1cm/sec 12t 7
5 1 L 1 L 10 1 1 1 1
0 2 4 [§] 8 10 0 20 40 60 80 100
Q, (sec™ Q, (sec™)
500 T | I — | — T
(e)
4001 |
0
73000 i
o L |
> 30 50 70 -
3 200[ T -
]
2
100 ° 4
O 1 1 1 1 1 1
30 40 50 60 70 80 90 100

Q, (sec™)

FIG. 1. (a) Suppression of Taylor-roll instabilities for azimuthally symmetric modes (m =0). The stability boundary is shifted to
higher shear rates as ¢ increases. The physical dimensions of the cell were taken from Ref. [2], i.e., R; =4.52 cm and R, =4.8375 cm,
and these are used henceforth. (b) The suppression of the Taylor instability for ¢ =10 cm/sec which is typical of colloidal crystals.
The remaining parameters are the same as in Fig. 1(a). (c) Plot of the largest growth exponents Re(p) as a function of , for ¢ =10
cm/sec, k,=15 cm™!, and m =0. The dashed line is the result for the usual Taylor problem, i.e., ¢ =0. The inset shows the details
near the onset of the instability in the specified (k,,m) plane. Note that the mode associated with the line which approaches the
fastest growing mode found in the Taylor instability is not the first mode to become unstable.
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For reasonable values of the material parameters, the
Taylor-like instabilities discussed in the preceding para-
graph are not the first to occur. They are preempted by
one of two resonance instabilities. By this we refer to an
instability which occurs only when the rotation rates are
tuned to some narrow range of values. The motion is
stable either above or below this range, and the system
has only narrow bands of unstable modes. Two types of
these instabilities have been found numerically: one
which strongly depends on € and the other is practically
independent of €. In addition, Figs. 1(a) and 1(b) assume
axisymmetric flow (m =0), and as we shall now show,
axisymmetric modes are not the first ones to become un-
stable.

A. Mathieu instabilities

The first class of instabilities is qualitatively similar to
those discussed for the plane Couette flow in Ref. [4];
namely Mathieu instabilities that occur when the modu-
lation frequency of the crystal elastic properties (i.e., I') is
an integer subharmonic of twice a natural oscillation fre-
quency of the system. The behavior is somewhat more
complicated than that found in the usual analysis of the
Mathieu instability due to the presence of viscosity, the
large number of modes, and convective effects which
change the e=0 frequencies and lifetimes of the colloidal
crystal transverse acoustic modes (cf. Ref. [4]).

Some results for the Floquet exponents are shown in
Figs. 2(a)-2(c). The data show several phenomena.
First, we see that modes roughly come in pairs. Each of
the pairs of modes corresponds to underdamped trans-
verse acoustic modes that propagate relative to the mean
rotation in clockwise and counterclockwise directions.
While time-reversal invariance normally requires that
each of the pairs have the same decay rate, here the rota-
tion breaks this symmetry, with the mode propagating
ahead of the laminar rotation having a slightly longer
lifetime.

An onset of instability is seen in Fig. 2(a) near
Q,~10.6 sec” ! (or 1.69 Hz and corresponding to a shear
rate of roughly 25 Hz). This is a Mathieu instability and
involves both clockwise and counterclockwise propaga-
ting (relative to the laminar rotation) transverse acoustic
modes. The € dependence of the imaginary part of the
Floquet exponent is shown in Fig. 2(b). As in Ref. [4], re-
ducing the modulation amplitude (€) stabilizes the mode,
as shown in Fig. 2(c).

Of course, finding a single instability is not sufficient.
We need to know the lowest rotation rate that makes any
mode unstable. The m dependence of the first unstable
region is shown in Fig. 3. (It is easy to see that the criti-
cal line is even under m—>—m and k,——k,.) A
“finger” of instability is shown that is qualitatively simi-
lar to those found in Ref. [4]. As m is increased, viscous
effects become more important and the motion becomes
stable.

The data shown in Figs. 2 and 3 were computed for
k,=0. Our numerical work shows that increasing k,
raises the critical rotation rate of the first unstable mode.
This can again be understood in terms of viscous effects.
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FIG. 2. (a) Floquet exponents at the first Mathieu instability.
This figure shows the real part of the exponent near the onset of
Mathieu instability when ¢ =10 cm/sec, €=0.05, m =36, and
k,=0. The points indicate modes as computed from Egs. (2.16)
and (2.17), while the solid lines are those computed from Eq.
(2.19). The extra pair of modes correspond to a transverse dis-
placement in the r-¢ plane, which is only contained in Egs.
(2.16) and (2.17). (b) The imaginary parts of the Floquet ex-
ponents for the two modes involved in the first Mathieu instabil-
ity shown in (a). (c) The € dependence of Re(u) for the cases
shown in (a) and (b). If € is too small, the motion will not be-
come unstable. The curves correspond to values of € as follows:
0.08 (solid), 0.05 (dashed), and 0.02 (dot dashed).
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FIG. 3. Stability boundary of the first Mathieu unstable re-
gion for ¢ =10 cm/sec, €=0.05, and k, =0.

From the data shown in Fig. 3, we see that the marginal
state has m =36 (remember that physical values of m
must integer) and Q;=10.6 sec”!. In addition,
Im(p)=—108.0 sec” 1540 at the instability, and hence
exchange of stability does not occur [13].

The first unstable mode has 7(r,¢) pointing entirely in
the z direction. This may be understood in terms of the
transverse normal mode frequencies in the absence of
shear. For k,=0 we have seen, cf. Eq. (2.19), that the
n,(r,t) decouples from the ¢ and r components. When
m 70 the r and ¢ displacements must be coupled in order
that the incompressibility condition be satisfied, and
hence the coupled motion requires more elastic energy
than motion in the z direction. This results in a higher
vibrational frequency, and the resonance condition re-
quired for the occurrence of a Mathieu instability occurs
later. Therefore, we conclude that

7-Vv =0, n-Vn=0 (3.7)

at the instability. Note that our conclusion is dependent
on the isotropic form assumed for the elastic moduli. If
this is not the case, then it is possible that the r-¢
motions would become unstable first if they remain un-
coupled from the z motion and if the transverse sound
speed for these motions was much lower than that for the
z motion. In addition, note that the elastic constants for
the sheared crystal are likely to be somewhat different
than those in the equilibrium state.

Finally we compare the cases of rotating the outer vs
inner cylinders in Fig. 4. Unlike the Taylor instability,
the Mathieu instability only requires that the elastic
property modulation rate be resonant, and this in turn
only depends on the magnitude of the local shear gra-
dient. Figure 4 supports this conclusion, although it is
important to remember that

Q, (as 2,=0) R,

Q, (as Q,=0) R, 3-8

when || remains unchanged. In addition, there are
small effects associated with the Coriolis and centrifugal
terms in the equations of motion that differentiate be-

10 11 12
0, or Q, (sec™)

FIG. 4. The changes in the Floquet exponents when the
inner or outer cylinder is rotated. The solid (dashed) curve
shows the case when outer (inner) cylinder is at rest while Q,
(€Q,) is nonzero for ¢ =10 cm/sec, m =30, €=0.05, and k,=0.
Note that unlike the Taylor instability, the Mathieu instability
should occur even if the outer cylinder is rotated.

tween inner and outer cylinder rotation. (For the data
shown in Fig. 4, Q,/0,=0.963 at the corresponding in-
stability points, while R;/R,=0.934.) In the limit of
plane Couette flow, the two peaks in Fig. 4 merge.

Finally, we show an example of real and imaginary
parts of the displacement field at the marginal state in
Fig. 5. The marginal state is quasiperiodic, although the
complex magnitude of the displacement field is periodic
with period 27 /T.

It is interesting to note that in Ref. [2], Weitz, Dozier,
and Chaikin reported the observation of vertical stripe

Re[n.(r.t)]

Im[7.(r,t)]

FIG. 5. Real and imaginary parts of 1,(r,z) at the onset of
first Mathieu instability shown in Figs. 2 and 3.



48 INSTABILITY AND PATTERN FORMATION IN COLLOIDAL-. ..

TABLE I. Critical mode parameters for ¢ =7 cm/sec.

€ Q, m 27R,/m
(sec™!) (cm)
0.04 8.3 23 1.32
0.05 8.13 28 1.09
0.06 7.86 32 0.95

patterns in alternating colors when the shear rate is about
10 Hz. The wavelength of the pattern is about 1 cm. For
€=0.05 and ¢ =10 cm/sec, our numerical work shows
that the mode with m =36 and k, =0 is the first to be-
come unstable (this is a Mathieu instability) at
Q,=10.6 sec” ! (1.69 Hz). This corresponds to a vertical
stripe pattern with a wavelength of about 0.84 cm.

The critical rotation rate and number of stripes de-
pends on the sound speed and on €. Some results for a
system having one of the sound speeds reported in Ref.
[2] are summarized in Table I.

B. Acoustic instabilities

In addition to the Mathieu instabilities just discussed,
there is another class of resonance like instabilities that is
essentially independent of the value of €. The decay rates
for the first few linearized modes in the relevant range of
parameters are shown in Fig. 6. An instability is clearly
shown, and this one has practically no dependence on ¢,
at least for physical values of € (i.e., € <0.5). As was the
case in the Mathieu instabilities, the first mode to become
unstable corresponds to vertically uniform motion [i.e.,
k,=0, m#0, and 7(r,t)||Z], and hence Eq. (3.7) is valid
here as well.

This instability bears no relation to the Mathieu insta-
bilities since it is independent of €. Nonetheless, it occurs
as a resonance and only appears if the rotation rate is ad-
justed to some small range of values (strictly speaking, for
fixed m and k,). It is natural to ask what is the mecha-
nism for this instability.

In trying to understand this resonance, it is convenient
to introduce reduced units by letting L=(R,—R)/2,

7L =ct, xL=r—(R,+R,)/2, g /ZmL/Rl, o
=Q,R,/2c,v=v/Lc, and f=7,e Time . Then, in the
narrow-gap limit, i.e., where we take ()(r) as a linear

function of x, Eq. (2.19) becomes

3?2 , & A
ot P |
2_ 0 A2n2
* ( T |0
_,._’1)/\ 2. a2 _2 a —
iveg |q°x x—8x2 I f(x,7)=0. (3.9)

In order to see how the instability arises, we ignore the
viscosity, and set ¥=0. Noting that f(+1,7)=0, and as-
suming that solutions are marginal, i.e., f is independent
of time, we find that
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Re(u) (sec™)

-10 . | . I ! | ) |
10.1 10.2 10.3 10.4 10.5

Q, (sec™)

10.6

FIG. 6. An example of the acoustic instability when ¢ =10

cm/sec, €=0, k, =0, and m =88.
1 9
_ 1 =Ef, (3.10)
2 3x? VTES
where E =0 and
1% (1—-a%?), |x|<1
x): +OO, |X|21 (3.11)

Equation (3.10) has been cast in the form of the time in-
dependent Schrodinger equation for a one-dimensional
problem with potential ¥ (x). Of course, the additional
condition E =0 requires that we adjust & so that there is
an eigenvalue E =0, and the onset of instability will
occur the first time such an eigenstate occurs. With the
problem cast in this manner, it is obvious that a necessary
condition for the existence of an E =0 solution is that
minimum value of the potential be negative, and hence

o>1. (3.12)

When this condition is expressed in terms of the original
variables, we see that the rotation must be supersonic,
i.e., the velocity difference between the walls and center
of the cell exceeds the transverse speed of sound in the
crystal.

The potential V(x) given by Eq. (3.11) only has
discrete eigenstates, and hence the values of @ at which
marginal solutions occur will also be dlscrete As @ is in-
creased, the number of states with E < 2@ will increase
and move to lower energy, ultimately passing through
zero. Each time this happens, there will be a resonantlike
instability.

The quantum-mechanical analogy sheds light on the
forms of the dlsplacement fields. Specifically, they will be
oscillatory for & '<|x| <1 and will decay exponentlally
into the middle of the cell. Hence, as the shear rate is in-
creased, the marginal acoustic fluctuations will be
confined to narrow boundary layers near the walls. In
addition, for larger shear rates the resonances will come
in closely spaced pairs, the splitting being simply related
to the usual tunneling splitting for the barrier.
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FIG. 7. Unstable (acoustic) regions as function of k, and m
with ¢ =10 cm/sec.

This analysis is certainly not complete since viscosity is
ignored and k, was set to zero. Nonetheless, it shows that
Eq. (3.9), and hence Eq. (2.19), has resonant instabilities
independent of the value of €. Further analysis shows
that the mode with k, =m =0, cf. Eq. (3.9), is stable with
respect to this type resonance.

We have numerically analyzed the full equations in the
supersonic region. As was the case with the Mathieu in-
stabilities, increasing k, leads to an increase in the critical
rotation rate needed for instability and introduces other
resonances with 7, ,50. An example of how the unsta-
ble regions change as a function of k, and m is shown in
Fig. 7, and an example of the displacement field at the
first acoustic instability point is shown in Fig. 8. Note
that unlike the Mathieu instabilities, here the amplitude

(r——Rl)/(RE*Rl)

FIG. 8. A plot of |7,(r,0)| (solid) and the phase shift §(7)
(dashed) at the onset of an acoustic instability: m =89, k, =0,
©,=10.3 sec”!, and ¢ =10 cm/sec.
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0, (sec™

100

FIG. 9. Mathieu and acoustic unstable regions for several
values of ¢; specifically, 0.09, 0.07, 0.05, and 0.03. Note that the
acoustic unstable regions (at the upper right) are unchanged
when € is changed, while the Mathieu unstable regions (lower
left) shrink when € decreases. The acoustic instability can occur
before (for € = 0.05 and 0.03) or after (for e=0.09 and 0.07) the
Mathieu instability. Moreover, reducing the speed of sound
also makes the first instability occur earlier, and the behavior
for ¢ =10 cm/sec (solid) and ¢ =12 cm/sec (dashed) is shown.

of the unstable mode is approximately constant in time
and the phase is nonuniform in space; it can be written as
Im(u)t+8(r). This is expected since the equations are
separable in time when €=0.

Finally, the instability regions corresponding to the
first instability for the two resonance mechanisms in the
k,=0 plane are compared in Fig. 9. As the figure shows,
the acoustic instabilities are at higher values of m and
they can come either before or after the Mathieu instabil-
ities depending on values of ¢ and €. Note that the values
of m at the first acoustic instability (i.e., the number of
stripes) is 88 for c=10 cm/sec and €=0, and occurs at
Q,=10.3 sec™ L.

Weitz, Dozier, and Chaikin [2] report sometimes ob-
serving metastable patterns with much smaller spacing
between the stripes (~3 mm). For their experimental
geometry this corresponds to m ~98, although if this pat-
tern is related to the acoustic instability discussed here,
the sound speed of the crystal must be known accurately
before a detailed comparison can be made.

IV. NONLINEARITIES
AND AMPLITUDE EQUATIONS

The preceding section focused on linear stability
analysis. Of course, once the system becomes unstable,
the displacement field begins to grow exponentially in
time and the linearized equations will no longer be valid;
nonlinear terms must be included in order to proceed fur-
ther. As discussed in the preceding section, we are most
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interested in the Mathieu instability, since the marginal
state bears some resemblance to what is observed experi-
mentally and since it will be the first to occur for all but
extremely small values of the modulation amplitude e.
This must be born in mind when considering various non-
linear corrections.

Nonlinear terms arise from several sources: (1) the
nonlinear convective terms in the equations of motion; (2)
the nonlinear correction terms in the relationship be-
tween the colloid particle positions and the displacement
field, cf. Eq. (2.5); and (3) anharmonic elastic interactions.
The role of the convective terms is expected to be small
for low rotation rates. Moreover, if the convective terms
can be treated perturbatively, then Eq. (3.7) guarantees
that the convection terms vanish at all orders, and hence
the symmetry of the marginal state will be manifested in
the unstable ones. In addition, it is easy to see that the
nonlinear corrections to Eq. (2.5) will also vanish for vert-
ically striped states where the displacement is the direc-
tion of the stripes. Thus the only remaining source of
nonlinearity is the anharmonic contribution to the elastic
interactions, and these are discussed in Appendix A.

By including the nonlinear terms, cf. Egs. (A7) and
(A8), in Eq. (2.12), and remembering that k, =0, we find
that

0= ,a‘;m)(t)+§[3jk A+ C (D, A0+
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9 ... 3 D I
at+vV n, —vV at+vV 7,
=c(1)?V2n, +V-[(b|Vn,(1,1)]?
+d |V, (r,t)|*+... )V, (r,1)],
4.1)

where b and d are determined by the details of the lattice
and intercolloidal interactions. As was the case with the
coefficients of the linear elasticity terms, the anharmonic
coupling parameters will be a periodic functions of time
for sheared lattices. Here, however, we ignore this time
dependence for simplicity.

We will solve the nonlinear equation of motion by ex-
panding 7,(r,¢) in some complete set of space-dependent

functions with time dependent amplitudes. Specifically,
for z-independent solutions, we let
m(r,«ﬁ,t)zzz—} P;(re™ 4™ (1), 4.2)
“Vr
mj

where the i’s are a normalized sine basis. Equations of
motion for the amplitudes are found by projecting Eq.
(4.1) onto ¢j(r)e""¢/( 27r'/?). We thereby find that

J1rians

mytmy,+m;=m

mim,my,my,my,

m
5
Jidysdardzidgds A

+d >
J1sJarJ30dards
mytmytmytmy+tms=m

where

mim,,m,,m d <
e = 2——’-[1/;, (1D () mm (g (NI, (N (1)

mim ,my,my,my,ms
Jiiysdadzidgis

X [lzjz(r){p\j}(r

~

Y;(r)=

dr 2

r

di;(r)
¢] l (r)]

" (1) 4

)—mzmﬂ/’jz("

=J. “ dr[djj(rh//] (r)+-mm (P (1))

mi;m ,m,,m (m (m
Jiiyrdgs 132 3A (t)Aj2 (t)A 3) ()
Y04, 0" 04" o+ - 4.3)
—mymyy; (P (1], (4.42)
)¢j3(r)][@jA(r)l//;js(r)—m4m5¢j4(r)¢j5(r)], (4.4b)

and B and Cj (¢) are matrix elements of B and é (¢) defined by Eqgs. (3.5) and (3.6).

Since 7, (7, ¢ t) is real, Eq. (4.2) implies that A

~A1)= 4

(m)* (). From Fig. 3 we see that when the first m state be-

comes unstable the others are still stable, and in addition, the unstable regions are very narrow for small €; hence, even
within the unstable region, only a single value of m is usually found to be unstable, although the m value of the unstable
mode will decrease with increasing shear rate. We therefore assume that the dominant contribution to the sums in Eq.

(4.3) comes from the terms with |m,|=|m,|= - --

0= +2 T+b 3 K

J1dyis

)+C(t)jkA

+d ¥ L™

Jid1sdpdzrdgds 11
117]2 ]3:]4)]5

11112]3

( )A(m) (t)A m) (1) A(m)( )

=|m| and ignore the rest; we thus find that

Am () A (1) Af (1)

A+, 4.5)
5
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where j=1,...,N, N is the point at which the basis ex- A. b>0,d=0
pansion is truncated, . . .
We first examine the behavior when only the leading-
j(’;‘l) Jyniy =2 T L (4.6a)  order nonlinearity is retained. In this case, it is easy to
see that the elastic energy has a single minimum corre-
and sponding to V7,(r,)=0, i.e., an unstrained crystal. In
(m) o ymim—m—mmm addition, the cubic nonlinearity will cut off the exponen-
Bapdardsdeds =7 1y 30 a0ds tial growth of the displacement field in the unstable re-
gions.
M, T mm,m g mm, = m,m, = m,m -
+4(J];11,J2’13,J4,J5 +J1;1,,12,13,14,]5 ). No.te that Eq. (4.5) _forms a set of couplecjl damped
Mathieu-Duffing equations. The Duffing oscillator is a
(4.6b) classic example of a nonlinear system where the oscilla-
0.1 . | . 10*
. | . | . | .
(a) 103; (b) _i
0 . 1 1070 ]
oy 1 E .
n | E E
o ‘ 10 ]
g 3 3
O F s
- Ol B L . < 1.0C ]
& 10} :
2 ] 10°°F ]
£
107°L ﬁ
j _AF El
—01l_ I . ] 10 . ! . ! . ! ]
-0.1 0 0.1 -40 —-20 0 20 40

Re[b"?A,(t)] (cm®/sec) frequency (Hz)

Re[3b"%; (r, t)] (ecm?/sec)

Im[3b"%,(r,t)] (em®/sec)

FIG. 10. (a) A phase portrait of the largest amplitude obtained by solving the four-mode equations inside a Mathieu unstable re-
gion for m =36, ¢ =10 cm/sec, €=0.05, Q;=10.6 sec” !, Q,=0, b >0, and d =0. The figure shows an 8-sec time range, starting at
12 sec. (b) The power spectrum of the solution to the nonlinear equations for the case shown in (a). The power spectrum is defined
by Eq. (4.7), with T=20sec. (c) The complex displacement field 7,(r,?) for the cases shown in (a) and (b).
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tion frequency becomes amplitude dependent [14]. This
is especially interesting here since the instability is driven
by resonances which require that the oscillator and
modulation frequencies be related; cf. Sec. III. If the am-
plitude grows sufficiently large, the system will behave
more like a Duffing oscillator, with concomitant changes
in the natural oscillator frequency.

The truncated equations of motion, i.e., Eq. (4.6), were
solved numerically; as mentioned above, the exponential
growth in the unstable regions saturates and the ampli-
tude of the displacement remains finite with
|V7,|~0(c/V'b). A phase portrait for the largest am-
plitude in the time range where all the amplitudes have

stopped growing exponentially is shown in Fig. 10(a).
We define a power spectrum for the solutions as
2
N T dt .
SH=3 | [ 5 4ne 2 4.7
j=1

where T is the time interval scanned. This power spec-
trum is shown in Fig. 10(b). Note that the components
with positive frequency correspond to rotation opposite
to ;.

As long as the relative amplitudes are comparable, the
components of the striped pattern with the slowest rota-
tion rates should be easiest to perceive, and for the data
shown in Fig. 10(b), these rotate at rates of 3.7 and 6.9
Hz in a direction opposite to inner cylinder rotation, with
the latter having the larger amplitude. As the Q, is in-
creased, the faster, larger component speeds up, while the
slower, smaller one slows down. Specifically, if the veloc-
ities of the associated components at R =R, are calculat-
ed, we find that v ~—2.53Q,+23.9 (cm/sec) for the
former, while v ~1.03Q,—0.94 (cm/sec), when €, is
given in Hz. The behavior of the larger amplitude com-
ponent is in the range reported in Ref. [2], although note
that the experiment covers a much larger range of €2, and

o
)
2
o
g
O

- Ol -
=
<
2,

E L
- ]
—1 0 1

Re[b"?A,(t)] (cm’/sec)
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it is fairly clear that the single-m approximation will
break down (see below) in this range.

Finally, the displacement field can be reconstructed us-
ing Eq. (4.2), and an example of 7(r,) within a Mathieu
instability is presented in Fig. 10(c). Note the similarity
between the displacement field obtained from the non-
linear equations and that characterizing the marginal
state; cf. Figs. 10(c) and 5, respectively.

B. »<0,d >0

The stripes should vanish when the cylinder rotation is
stopped for the cases shown in the preceding subsection,
assuming that the one m-mode approximation is ade-
quate. However, according to Ref. [4], this need not be
the case, and the stripes can persist even after the rota-
tion is stopped. One way to explain this observation is to
introduce a metastable minimum into the elastic energy,
specifically, one corresponding to a strained state.

An additional minimum in the elastic energy can occur
when b <0, although in this case, it is essential that the
next nonvanishing terms in the expansion of the elastic
energy [i.e., those proportional to d in Eq. (4.1)] have pos-
itive coefficients. It is easy to see that a second minimum
in the elastic energy will occur when
|V, |=V[—b+(b*—4dc?)'?]/2d if b<—2cd'?. Of
course, we do not expect that this is the global minimum
and hence we require that

Bl _ 2
2¢d'? V3

Some numerical examples are shown in Figs. 11(a)-11(d).
Note that the solutions depend on the initial amplitude
and two types of behavior were observed for the parame-
ters used in the figures.

Examples of the behavior obtained with small initial
amplitude are shown in Figs. 11(a) and 11(b). Most of the

1< (4.8)

(b)

T
L

T |

RERRLL

sl Cvl ol

L L . 1 . 1
—40 -20 0 20 40

frequency (Hz)

FIG. 11. (a) A phase portrait of the largest component obtained for small initial amplitudes in a Mathieu unstable region. Here
m =36, c =10 cm/sec, €=0.05, Q;=10.6 sec” !, Q,=0, b <0, and d =0. 1876b2/c?. The number of amplitudes and time ranges is
the same as in Figs. 10(a)-10(c). (b) The power spectrum of the solution used in (a). (c) A phase portrait for large initial amplitude
for the parameters used in (a). (d) The power spectrum of the solution used in (c). (e) The displacement field for the case shown in (c)
and (d).
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features are similar to what was observed in Figs.
10(a)-10(c). The driving force associated with the
Mathieu instability does not drive the amplitude over the
barrier between the unstrained and strained
configurations and the results shown in Figs. 11(a)-11(c)
are not unexpected.

Very different behavior is obtained when the initial am-
plitude is large. An example is analyzed in Figs.
11(c)-11(e). Unlike the preceding cases, the motion is
very irregular and the power spectrum is broad. In addi-
tion, unlike what was observed when b > 0, here there is a
qualitative difference between the two-mode approxima-
tions and the higher-mode ones when the initial ampli-
tude is large [15]. Quasiperiodic behavior is observed,

.

even for large amplitude motion, if only two modes are
kept, but this is an artifact of the approximation. Finally,
we have carried out a limited study of the dependence of
our results on the initial amplitudes and have only found
the two types of behavior just described.

V. LIGHT-SCATTERING EXPERIMENTS

Many of the experiments on sheared colloidal crystals
involve some form of light scattering. In this section, we
examine what is measured in an ideal light-scattering ex-
periment. It is well known that the scattered far-field in-
tensity, resulting from elastic single scattering, and mea-
sured by heterodyne detection is proportional to
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I« [ dkip |E(kipo)I%S, (1), (5.1)
where |E(k;,.)|? is proportional to the incident intensity
at wave vector k;,,

sy=(ze ), 5.2

bj

q=k,,; —k;, is the momentum transfer for the scattering
process, |Kq,| =1|kinl, and the prime on the sum in Eq.
(5.2) implies that only particles within the illuminated
volume should be considered. In writing Eq. (5.1) we
have allowed for the possibility that the incident light
may not be monochromatic or unidirectional. Finally, in
what follows we assume that the illuminated region is
large enough to include many colloid particles, but small
compared to the characteristic length scales in 7(r, ).

If 7, is slowly varying over the illuminated region, we
can let

() =1, ()= {1 +2[FQ,(R, 1)+ Q4 (R, 1)1} - A (1),
(5.3)
where A, (£)=R;(1) — R, (1),
97,(r,t)
Qr(l{’t)E Y ’ (5.43)
or r=R
and
1 | 0n,(r,¢)
= |27 5.4
Q¢(R)t)— R a¢ r=R; ( b)

where R denotes the center of the illuminated region.
It is easy to show that

A (1)~ Vg[e®RTER A, (0)

+O0(A;(0)[R;(0)+R;(0)—2R]) (5.5)
within the illuminated region, where ‘fz&—-’f$ and
Q(R) is given by Eq. (2.4). Carrying out some simple
algebra shows that

iq- -Gl (R,t) Ajk(O)

S,=3e (5.6)
Jrk
where
G(R,1)=[1+27Q,(R,?)
+280,4(R,0]-e *®TL[1+ BRRO(R)].  (5.7)

Now, let {A;(0)} form a Bravais lattice and K be a re-
ciprocal lattice vector. The Bragg condition becomes

GT(R,t)-q=K. (5.8)
We choose the local x -y -z axis to point along the r-¢-z
directions, respectively. By using Eq. (5.7) in Eq. (5.8),
we find that
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q, cosQlit —sinQt—RQ'tcosQt —Q, | |K,
gy |= |sinQdt  cosQr—RQ'tsinQt  —Q, | |K,
q, 0 0 1 K,

(5.9)

This last expression simplifies when the measurement is
done at the outer cylinder, which is also kept stationary.
Since n(r,t)=0 for r=R,, Q vanishes, and Eq. (5.9) be-
comes

q, 1 —RQ:t —0,) [k,
g, |=[0 1 o ||k, (5.10)
a0 0o o 1 |k,

There are three contributions to the change in the
scattering pattern; cf. Eq. (5.9). The first is simply rota-
tion about the Z axis at rate (R). The second results
from the locally linear shear distortion of lattice and ap-
pears in the terms proportional to RQ'(R)t. Note that
this results in a periodic distortion of the scattering pat-
tern, where the period is roughly [RQ'(R)]™!. Finally,
there are the terms in O, 4 These are the only ones
which are nonuniform in space and are responsible for
the formation of the stripes.

Each of the foregoing contributions can be examined
separately by choosing the direction of the momentum
transfer. For example, the effect of the shear distortion
of the lattice will not be seen if K, =0. Similarly, only
the terms in the Q’s will be seen if g, =gq,=0.

The observation of stripes is solely related to 0, 4(R,t).
Some examples of Q, , were computed using the non-
linear equations considered in Sec. IV, and their power
spectra are shown in Figs. 12(a)-12(d). The spectra do
not consist of a single frequency, and hence the observed
pattern is a superposition of clockwise and counterclock-
wise rotating striped patterns, each rotating with angular
velocity — f/m, and these should be measurable by spec-
trally analyzing the scattering data. (Strictly speaking,
we should compute the structure factor and scattering in-
tensity for a given experimental configuration in order to
compare.)

If the system is viewed by eye, the slowest motion will
be the one most easily perceived (assuming that the am-
plitudes are not too dissimilar), and for the data shown in
Figs. 12(a)-12(d), this leads us to conclude that the
stripes rotate in a direction opposite to the inner cylinder
rotation, with angular velocity 1.2 sec™! for ¢ =10
cm/sec, and €=0.05 and 1.4 sec ! for ¢ =7 cm/sec and
€=0.06, respectively. Of course, this conclusion is
dependent on the relative magnitude of the slowest com-
ponent being not too much smaller than the next slowest,
etc., and this in turn depends on where the measurement
is done; in general, the amplitude of the corotating com-
ponent increases as R is moved to the inner cylinder. In
reality, there are several slowly rotating components, and
thus the analysis of the experiment is somewhat more
complicated and will be considered in detail elsewhere.

It is interesting to note that order of magnitude of non-
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FIG. 12. (a) Power spectra for Q,(R,t) associated with the nonlinear solutions presented in Sec. IV A and evaluated at the inner
cylinder. The solid curves are for ¢ =7 cm/sec and €=0.06, while the dashed ones are for ¢ =10 cm/sec and €=0.05. (b) Same as in
(a), but now R =(R;+R,)/2. (c) Same as in (a), but now R =R,, i.e., at the outer cylinder. (d) Same as in (b), but now the power

spectra of Q4(R,t) are shown.

linear coefficients, i.e., b, d, etc. in Eq. (4.1), can be easily
estimated. By using Egs. (4.1), (4.2), and (5.10), we find
that b~0(c?/|Q,|?) and d ~0(c2/|Q,|*). In addition,
by using reported color differences between adjacent
stripes (red and green), it follows that |Q,|~1/6, which
for ¢ =10 cm/sec, implies that b~ 3600cm?/sec’ and
d~0(10%) cm?/sec?.

Finally, note that we have been purposely vague about
specifying the lattice. The theory presented here is valid
only for long-wavelength phenomena, and in particular
we cannot preclude mechanisms which would lead to
reconstruction of the lattice, either before or after the in-
stabilities discussed here. Nonetheless, the instabilities
discussed here must still occur, as long as the long wave-
length properties can be discussed in terms of sheared
elastic continua.

VI. DISCUSSION AND SUMMARY

In this work we have examined the long-wavelength
behavior of sheared colloidal crystals in the Taylor-

Couette geometry. We have shown that the usual Taylor
instability is suppressed when the elasticity of the crystal
is accounted for. Nonetheless, we have found two insta-
bility mechanisms that, unlike the Taylor instability,
operate when either the inner or outer cylinder is rotated.
Moreover, both of the instabilities result in modes with
very different symmetry than the azimuthally symmetric
Taylor rolls. The unstable modes consist of a large num-
ber of vertical stripes that are uniform in the vertical
direction and that rotate in time. In addition, we have
shown that the exchange-of-stability principle does not
hold for the marginal states.

One of the instability mechanisms involves supersonic
(in the sense that the tangential velocity difference across
the gap between two cylinders is larger than twice the
crystal transverse sound speed) flow in the crystal. The
other is associated with the Mathieu instability and is
analogous to the instability discussed in Ref. [4]. For an
isotropic model for the elastic moduli, both instabilities
have the displacement in the z direction. Moreover, of
the two, the latter results in a pattern with a longer wave-
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length and exhibits many of the features reported in Ref.
[2]. Note that, while the marginal state arises with a
definite number of stripes, that number should slowly de-
crease as the shear rate increases (of course, this assumes
that the symmetry of the nearest marginal state is
reflected in the unstable one).

The behavior in the unstable regions was examined by
deriving equations for the amplitudes; these were based
on three key assumptions: (1) that the motion was uni-
form in the z; (2) that the symmetry of the marginal state
(i.e., the direction of the displacement field and the num-
ber of stripes) dominates the unstable motion; and (3) the
form of the colloidal crystal’s elastic energy (here we con-
sidered two cases, i.e., those with a strained metastable
minimum and those without). The second assumption is
probably valid only near the onset of instability since
range of unstable modes shifts to lower m as the rotation
rate is increased. Nonetheless, this effect can be included
in the theory presented in Sec. IV by including more m’s
in the equations of motion for the amplitudes; this will be
investigated in the future.

While we have used a specific model for the dynamics
of the colloid and the underlying fluid, several points
must be stressed. First, much of the structure of the con-
tinuum equations, cf. Egs. (2.7) and (2.8), could have been
deduced without reference to an underlying microscopic
model and the instabilities discussed here would still be
obtained. An extreme example of this would arise if the
shear of the colloidal lattice took place by having rela-
tively large, but weakly aligned, domains of unsheared
crystal slide over each other.

The continuum equations do not include more micro-
scopic effects such as dislocations, and hence, if micro-
scopic changes to the lattice occur, these will not be de-
scribed in the current approximation. Nonetheless, the
long-wavelength phenomena still takes place, even in the
presence of dislocations, and the instabilities discussed in
this work will occur. In molecular crystals, the energy
required to have nondislocation mediated fracture is ex-
tremely high, and hence the required shear rates are very
large. Since colloidal crystals are so soft, this does not
seem to be the case here; the shear rates required to form
a striped pattern are largely dependent on the system
geometry and the transverse acoustic sound speed. The
only adjustable parameter of the theory is € in Eq. (A8).
When experimental values are used, we have shown that
the observed patterns occur in the right range of shear
rates and have the right number of stripes and rotation
speed.

Finally, we have ignored the space dependence of the
local shear gradients in modeling the time-dependent
transverse sound speed. As was discussed in the text, this
is justified for thin samples. When this is not the case,
then the modulation is not purely periodic and the effect
on the instability, and in particular on the time depen-
dence of the stripped pattern, is unclear. This point will
be investigated in a future work.
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APPENDIX A

The colloidal force on ith particle is

f(R;,1)= 3 F(R,+7(R;,1)—n(R;,t)—F([R;) (A1)
Jj (D)
= 3 F(R;+n(R,—R;/2+R;;/2,1)
Jj (ED

—n(R;—R;;/2—R;;/2,t))—F(R};).
(A2)
When viewed as a function of R;; /2 and R; —R;; /2,
F(R;+7(R;—R;/2+R;;/2,1)
—n(R;—R;;/2—R;;/2,1))

is narrowly peaked around R;;=0. The width of the
peak is basically the force range a, which is microscopic,
while L, the characteristic length scale upon which 7(r,¢)
varies, is macroscopic, i.e.,

2 <. (A3)

L
Therefore, we may use the idea of Kramers and Moyal
[9] to Taylor expand the R; —R;; /2 dependence of the
force around R;; /2=0, i.e.,

_Ry 2

1
f(Ri,t):EF > > 3R

n=1""j (i)

XF(R;+n(R; +R,; /2)

—n(R;—R;/2)).  (A4)

Here we have neglected n =0 term and the sum of all the
F(R;;) terms; they are zero as long as the sheared lattice
has inversion symmetry locally. Clearly, this force is the
spatial gradient of a tensor and thus momentum is con-
served as expected. Furthermore, using Eq. (A3), we find
that

f(R,0)=—7 X Rij'———a; F(R;-[Vn(R;,2)+1])
j (D) i

+0(a/L), (AS)

and by keeping the leading order in a /L we obtain Eq.
(2.9).

A formal expansion in powers of the strain-tensor Vo
is easy to carry out. At the linear order, using Eq. (2.13),
we find that

f (r,t)=aV3y(r,t), (A6)

where the coefficient a is a real number and involves a lat-
tice sum on the sheared lattice. In writing this last ex-
pression, we assume that the sheared lattice can be ap-
proximated as being locally isotropic; hence there is a sin-
gle transverse sound speed.

For nonlinear terms, we restrict ourselves to the non-
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convective instabilities discussed in Sec. III and consider
only those terms important for the modes in the unstable
regime. As was discussed in the text, these are 7, modes
at k,=0. The nth order nonlinear elastic contributions
are denoted as f,, and have the form

0 for n even
A

f,=2 b,V-[|Vn,(r,t)|" ~Vn,(r,t)], for n odd,

(A7)

where b, is real and again only involves a lattice sum. In
general, the b,’s are periodic functions of time. Howev-
er, for simplicity, we will model b, as time independent
for n > 1, and include the simplest periodic modulation of
the elastic properties in a, i.e., we assume that

2
pm.c

Pe

f(r,1)= [1+42ecos(T't)]V2x(r,¢), (A8)

where c¢(1+2¢€)!/? is the transverse sound speed the
unsheared crystal, 2€ is the amplitude of the modulation
caused by having planes of crystal sliding over each oth-
er, and T is the modulation frequency.

As discussed in Ref. [4], T is proportional to the local
shear gradient. The proportionality constant depends on
the lattice type and the orientation of the lattice with
respect to the shear. For what follows, we assume that
the proportionality constant is unity (e.g., as is the case
for simple cubic lattices). In addition, for systems with a
narrow gap between the cylinders, the shear gradient is
roughly constant in space and we approximate I' by the
average velocity gradient.

APPENDIX B

Operators 4, B, and C(1) in Eq. (3.1) can be written as
2X?2 matrices with index 1(2) representing r(¢) com-
ponent of 7. From Egs. (2.16) and (2.17), we have

A,=k2=D/ D/, (B1)
A12=—D;%, (B2)
221 = %Dﬁ, (B3)
Ay=k}+—, (B4)
r
B, =k2[2imQ—v A—% } ] —D,; (2imQ—vA)D,",
r

(BS)
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B=—2k2 oMY ]—D:(zimn—vmiﬂ, (B6)
r r
By =2k} |0 — 5% | = 2 2imQ—vAID/, (B7)
¥
Byp=kZ2 2imQ—v [A— L || = 2ima—va)im
r r r
(B8)
Ct); =G +c(1)?A,, (B9)
where i and j run from 1 to 2 and
A, =—k? A—iz +D,AD;", (B10)
r
2imk? ;
ﬁlZ_ 2 £ r—Aﬂ’ (Bll)
~ 2imk?
21 - r2 z ﬂADr+’ (B12)
o= —k2|a—L |4 Im pim
22 z r2 ’ A r ’ (B13)
@uzk?{ imQ—v A——%HimQ—FZrQ’ [Q— Y ]
r r
+D, (vA—imQ)imQDT, (B14)
: 2
G =—2imak? oY +D:(VA—imm’—";9—,
(B15)
Gy=k? [2ima 0= |4y [a—L 1o
r r
im . . +
+T(VA—1mQ)thD, R (B16)
Gy =imk? |imQ—v A—% Q
c 03
—im a—ima) L. (B17)
r r
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